Đề bài - bài 10 trang 54 sgk hình học 11

\( \Rightarrow \left\{ \begin{array}{l} O \in AC \subset \left( {SAC} \right)\\ O \in BN \subset \left( {SBN} \right) \end{array} \right.\) \( \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBN} \right)\)

Đề bài

Cho hình chóp \(S. ABCD\) có \(AB\) và \(CD\) không song song. Gọi \(M\) là một điểm thuộc miền trong của tam giác \(SCD\).

a) Tìm giao điểm \(N\) của đường thẳng \(CD\) và mặt phẳng \((SBM)\).

b) Tìm giao tuyến của hai mặt phẳng \((SBM)\) và \((SAC)\).

c) Tìm giao điểm \(I\) của đường thẳng \(BM\) và mặt phẳng \((SAC)\).

d) Tìm giao điểm \(P\) của \(SC\) và mặt phẳng \((ABM)\), từ đó suy ra giao tuyến của hai mặt phẳng \((SCD)\) và \((ABM)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Kéo dài \(SM\) cắt \(CD\) tại \(N\).

b) Tìm hai điểm chung củahai mặt phẳng \((SBM)\) và \((SAC)\).

c) Tìm một đường thẳng nằm trong\(\left( {SAC} \right)\;\)cắt \(BM\) tại \(I\).

d)Tìm một đường thẳng nằm trong \((ABM)\) cắt \(SC\) tại \(P\). Xác định hai điểm chung củahai mặt phẳng \((SCD)\) và \((ABM)\).

Lời giải chi tiết

Đề bài - bài 10 trang 54 sgk hình học 11

a) Trong \((SCD)\) kéo dài \(SM\) cắt \(CD\) tại \(N\).

\( \Rightarrow \left\{ \begin{array}{l}
N \in CD\\
N \in SM \subset \left( {SMB} \right)
\end{array} \right.\) \( \Rightarrow N = CD \cap \left( {SBM} \right)\)

b) \((SBM) (SBN)\).

Dễ thấy \(S \in \left( {SAC} \right) \cap \left( {SBM} \right)\).

Trong \((ABCD)\) gọi \(O=AC\cap BN\)

\( \Rightarrow \left\{ \begin{array}{l}
O \in AC \subset \left( {SAC} \right)\\
O \in BN \subset \left( {SBN} \right)
\end{array} \right.\) \( \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBN} \right)\)

Do đó: \(SO=(SAC)\cap(SBM)\).

c) Trong \((SBN)\) gọi \(I\) là giao của \(MB\) và \(SO\). Mà\(SO \subset \left( {SAC} \right)\)

Do đó: \(I=BM\cap (SAC)\)

d) Trong \((SAC)\), gọi\(P = AI \cap SC\)

\(\Rightarrow \left\{ \begin{array}{l}
P \in AI \subset \left( {ABM} \right)\\
P \in SC
\end{array} \right. \) \(\Rightarrow P = SC \cap \left( {ABM} \right)\)

Lại có\(P \in SC\), mà\(SC \subset \left( {SCD} \right) \Rightarrow P \in \left( {SCD} \right).\)

\( \Rightarrow {\rm{ }}P \in \left( {AMB} \right) \cap \left( {SCD} \right).\)

Lại có: \(M (SCD)\) (gt)

\( \Rightarrow M \in \left( {MAB} \right) \cap \left( {SCD} \right)\)

Vậy giao tuyến của \((MAB)\) và \((SCD)\) là đường thẳng \(MP\).

Cách khác:

Câu d có thể dựng hình bằng cách khác như sau:

Trong \((ABCD)\) , gọi\(K = AB \cap CD\). Khi đó \(\left( {ABM} \right) \equiv \left( {AKM} \right)\)

Trong \((SCD)\), gọi \(P= MK\cap SC\). Lại có \(MK \subset \left( {ABM} \right)\).

Do đó: \(P=SC\cap (ABM)\)

Trong \((SDC)\) gọi \(Q=MK\cap SD\), \(MK \subset \left( {ABM} \right) \Rightarrow Q = SD \cap \left( {ABM} \right)\).

\( \Rightarrow PQ \subset \left( {ABM} \right),\,\,PQ \subset \left( {SCD} \right) \)\(\Rightarrow PQ = \left( {SCD} \right) \cap \left( {ABM} \right)\).