Mechanoreceptors là gì

1. Averill DB, Cameron WE, Berger AJ. Monosynaptic excitation of dorsal medullary respiratory neurons by slowly adapting pulmonary stretch receptors. J Neurophysiol. 1984;52:771–785. [PubMed] [Google Scholar]

2. Backman SB, Anders C, Ballantyne D, Röhrig N, Camerer H, Mifflin S, Jordan D, Dickhaus H, Spyer KM, Richter DW. Evidence for a monosynaptic connection between slowly adapting pulmonary stretch receptor afferents and inspiratory beta neurones. Pflügers Arch. 1984;402:129–136. [PubMed] [Google Scholar]

3. Bajic J, Zuperku EJ, Hopp FA. Processing of pulmonary afferent input patterns by respiratory I-beta neurons. Am J Physiol Regul Integr Comp Physiol. 1989;256:R379–R393. [PubMed] [Google Scholar]

4. Bajic J, Zuperku EJ, Tonkovic-Capin M, Hopp FA. Expiratory bulbospinal neurons of dogs I. Control of discharge patterns by pulmonary stretch receptors. Am J Physiol Regul Integr Comp Physiol. 1992;262:R1075–R1086. [PubMed] [Google Scholar]

5. Bajic J, Zuperku EJ, Tonkovic-Capin M, Hopp FA. Interaction between chemoreceptor and stretch receptor inputs at medullary respiratory neurons. Am J Physiol Regul Integr Comp Physiol. 1994;266:R1951–R1961. [PubMed] [Google Scholar]

6. Ballantyne D, Richter DW. The non-uniform character of expiratory synaptic activity in expiratory bulbospinal neurones of the cat. J Physiol. 1986;370:433–456. [PMC free article] [PubMed] [Google Scholar]

7. Barone FC, Armstrong DL, Wayner MJ, Zarco De Coronado I. Effects of neurotransmitters and vagus nerve stimulation on diencephalic and mesencephalic neuronal activity. Brain Res Bull. 1984;13:565–571. [PubMed] [Google Scholar]

8. Bartlett D., Jr Respiratory functions of the larynx. Physiol Rev. 1989;69:33–57. [PubMed] [Google Scholar]

9. Bassal M, Bianchi AL. Effets de la stimulation des structures nerveuses centrales sur les activités respiratoires efférentes chez le chat I. Réponses á la stimulation corticale. J Physiol [Paris] 1981;77:741–757. [PubMed] [Google Scholar]

10. Bellingham MC, Lipski J. Morphology and electrophysiology of superior laryngeal nerve afferents and postsynaptic neurons in the medulla oblongata of the cat. Neuroscience. 1992;48:205–216. [PubMed] [Google Scholar]

11. Berger AJ. Dorsal respiratory group neurons in the medulla of cat: spinal projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res. 1977;135:231–254. [PubMed] [Google Scholar]

12. Berger AJ, Averill DB. Projection of single pulmonary stretch receptors to solitary tract region. J Neurophysiol. 1983;49:819–830. [PubMed] [Google Scholar]

13. Berger AJ, Dick TE. Connectivity of slowly adapting pulmonary stretch receptors with dorsal medullary respiratory neurons. J Neurophysiol. 1987;58:1259–1274. [PubMed] [Google Scholar]

14. Bergren DR, Peterson DF. Identification of vagal sensory receptors in the rat lung: Are there subtypes of slowly adapting receptors? J Physiol. 1993;464:681–698. [PMC free article] [PubMed] [Google Scholar]

15. Berry RB, Gleeson K. Respiratory arousal from sleep: mechanisms and significance. Sleep. 1997;20:654–675. [PubMed] [Google Scholar]

16. Bonham AC, Coles SK, McCrimmon DR. Pulmonary stretch receptor afferents activate excitatory amino acid receptors in the nucleus tractus solitarii in rats. J Physiol. 1993;464:725–745. [PMC free article] [PubMed] [Google Scholar]

17. Bonham AC, Joad JP. Neurones in commissural nucleus tractus solitarii required for full expression of the pulmonary C fibre reflex in rat. J Physiol. 1991;441:95–112. [PMC free article] [PubMed] [Google Scholar]

18. Bonham AC, McCrimmon DR. Neurones in a discrete region of the nucleus tractus solitarius are required for the Breuer-Hering reflex in rat. J Physiol. 1990;427:261–280. [PMC free article] [PubMed] [Google Scholar]

19. Borday C, Wrobel L, Fortin G, Champagnat J, Thaeron-Antono C, Thoby-Brisson M. Developmental gene control of brainstem function: views from the embryo. Prog Biophys Mol Biol. 2004;84:89–106. [PubMed] [Google Scholar]

20. BuSha BF, Judd BG, Manning HL, Simon PM, Searle BC, Daubenspeck JA, Leiter JC. Identification of respiratory vagal feedback in awake normal subjects using pseudorandom unloading. J Appl Physiol. 2001;90:2330–2340. [PubMed] [Google Scholar]

21. BuSha BF, Stella MH, Manning HL, Leiter JC. Termination of inspiration by phase-dependent respiratory vagal feedback in awake normal humans. J Appl Physiol. 2002;93:903–910. [PubMed] [Google Scholar]

22. Canning BJ. Anatomy and neurophysiology of the cough reflex: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:33S–47S. [PubMed] [Google Scholar]

23. Canning BJ, Fischer A. Neural regulation of airway smooth muscle tone. Respir Physiol. 2001;125:113–127. [PubMed] [Google Scholar]

24. Carr MJ, Undem BJ. Bronchopulmonary afferent nerves. Respirology. 2003;8:291–301. [PubMed] [Google Scholar]

25. Clark FJ, Euler von C. On the regulation of depth and rate of breathing. J Physiol. 1972;222:267–295. [PMC free article] [PubMed] [Google Scholar]

26. Cohen MI, Feldman JL. Models of respiratory phase-switching. Fed Proc. 1977;36:2367–2374. [PubMed] [Google Scholar]

27. Cohen MI, Feldman JL. Discharge properties of dorsal medullary inspiratory neurons: relation to pulmonary afferent and phrenic efferent discharge. J Neurophysiol. 1984;51:753–776. [PubMed] [Google Scholar]

28. Cohen MI, Feldman JL, Sommer D. Caudal medullary expiratory neurone and internal intercostal nerve discharges in the cat: effects of lung inflation. J Physiol. 1985;368:147–178. [PMC free article] [PubMed] [Google Scholar]

29. Cohen MI, Huang WX, Barnhardt R, See WR. Timing of medullary late-inspiratory neuron discharges: vagal afferent effects indicate possible off-switch function. J Neurophysiol. 1993;69:1784–1787. [PubMed] [Google Scholar]

30. Cohen MI, Shaw CF, Barnhardt R. Connectivity of rostral pontine inspiratory-modulated neurons as revealed by responses to vagal and superior laryngeal afferent stimulation. In: Speck DF, Dekin MS, Revelette WR, Frazier DT, editors. Respiratory Control: Central and Peripheral Mechanisms. Lexington, KY: The University Press of Kentucky; 1993. pp. 91–94. [Google Scholar]

31. Cohen MI, Shaw CF. Role in the inspiratory off-switch of vagal inputs to rostral pontine inspiratory-modulated neurons. Respir Physiol Neurobiol. 2004;143:127–140. [PubMed] [Google Scholar]

32. Coleridge HM, Coleridge JC, Schultz HD. Afferent pathways involved in reflex regulation of airway smooth muscle. Pharmacol Ther. 1989;42:1–63. [PubMed] [Google Scholar]

33. Davies RO, Kubin L. Projection of pulmonary rapidly adapting receptors to the medulla of the cat: an antidromic mapping study. J Physiol. 1986;373:63–86. [PMC free article] [PubMed] [Google Scholar]

34. Davies RO, Kubin L, Pack AI. Pulmonary stretch receptor relay neurones of the cat: location and contralateral medullary projections. J Physiol. 1987;383:571–585. [PMC free article] [PubMed] [Google Scholar]

35. Dawkins MA, Foreman RD, Farber JP. Short latency excitation of upper cervical respiratory neurons by vagal stimulation in the rat. Brain Res. 1992;594:319–322. [PubMed] [Google Scholar]

36. Dogas Z, Krolo M, Stuth EA, Tonkovic-Capin M, Hopp FA, McCrimmon DR, Zuperku EJ. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns. J Neurophysiol. 1998;80:2368–2377. [PubMed] [Google Scholar]

37. Donnelly DF, Sica AL, Cohen MI, Zhang H. Dorsal medullary inspiratory neurons: effects of superior laryngeal afferent stimulation. Brain Res. 1989;491:243–252. [PubMed] [Google Scholar]

38. Donnelly DF, Sica AL, Cohen MI, Zhang H. Effects of contralateral superior laryngeal nerve stimulation on dorsal medullary inspiratory neurons. Brain Res. 1989;505:149–152. [PubMed] [Google Scholar]

39. Donoghue S, Garcia M, Jordan D, Spyer KM. The brain-stem projections of pulmonary stretch afferent neurones in cats and rabbits. J Physiol. 1982;322:353–363. [PMC free article] [PubMed] [Google Scholar]

40. Dutschmann M, Morschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: implications for the pontine Kölliker-Fuse nucleus. Respir Physiol Neurobiol. 2004;143:155–165. [PubMed] [Google Scholar]

41. Edwards E, Paton JFR. Glutamate stimulation of raphe pallidus attenuates the cardiopulmonary reflex in anaesthetised rats. Autonom Neurosci. 2000;82:87–96. [PubMed] [Google Scholar]

42. Eldridge FL, Chen Z. Respiratory-associated rhythmic firing of midbrain neurons is modulated by vagal input. Respir Physiol. 1992;90:31–46. [PubMed] [Google Scholar]

43. Ezure K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog Neurobiol. 1990;35:429–450. [PubMed] [Google Scholar]

44. Ezure K. Respiration-related afferents to parabrachial pontine regions. Respir Physiol Neurobiol. 2004;143:167–175. [PubMed] [Google Scholar]

45. Ezure K, Otake K, Lipski J, Wong She RB. Efferent projections of pulmonary rapidly adapting receptor relay neurons in the cat. Brain Res. 1991;564:268–278. [PubMed] [Google Scholar]

46. Ezure K, Tanaka I. Pump neurons of the nucleus of the solitary tract project widely to the medulla. Neurosci Lett. 1996;215:123–126. [PubMed] [Google Scholar]

47. Ezure K, Tanaka I. Identification of deflation-sensitive inspiratory neurons in the dorsal respiratory group of the rat. Brain Res. 2000;883:22–30. [PubMed] [Google Scholar]

48. Ezure K, Tanaka I. Lung inflation inhibits rapidly adapting receptor relay neurons in the rat. Neuroreport. 2000;11:1709–1712. [PubMed] [Google Scholar]

49. Ezure K, Tanaka I. GABA, in some cases together with glycine, is used as the inhibitory transmitter by pump cells in the Hering-Breuer reflex pathway of the rat. Neuroscience. 2004;127:409–417. [PubMed] [Google Scholar]

50. Ezure K, Tanaka I, Miyazaki M. Pontine projections of pulmonary slowly adapting receptor relay neurons in the cat. Neuroreport. 1998;9:411–414. [PubMed] [Google Scholar]

51. Ezure K, Tanaka I, Miyazaki M. Inspiratory inhibition of pulmonary rapidly adapting receptor relay neurons in the rat. Neurosci Lett. 1998;258:49–52. [PubMed] [Google Scholar]

52. Ezure K, Tanaka I, Miyazaki M. Electrophysiological and pharmacological analysis of synaptic inputs to pulmonary rapidly adapting receptor relay neurons in the rat. Exp Brain Res. 1999;128:471–480. [PubMed] [Google Scholar]

53. Ezure K, Tanaka I, Saito Y, Otake K. Axonal projections of pulmonary slowly adapting receptor relay neurons in the rat. J Comp Neurol. 2002;446:81–94. [PubMed] [Google Scholar]

54. Feldman JL, Cohen MI. Relation between expiratory duration and rostral medullary expiratory neuronal discharge. Brain Res. 1978;141:172–178. [PubMed] [Google Scholar]

55. Feldman JL, Cohen MI, Wolotsky P. Powerful inhibition of pontine respiratory neurons by pulmonary afferent activity. Brain Res. 1976;104:341–346. [PubMed] [Google Scholar]

56. Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci. 2003;26:239–266. [PMC free article] [PubMed] [Google Scholar]

57. Fenik V, Marchenko V, Janssen P, Davies RO, Kubin L. A5 cells are silenced when REM sleep-like signs are elicited by pontine carbachol. J Appl Physiol. 2002;93:1448–1456. [PubMed] [Google Scholar]

58. Haddad GG, Farber JP. Developmental Neurobiology of Breathing. New York: Marcel Dekker; 1991. [Google Scholar]

59. Hamilton RD, Horner RL, Winning AJ, Guz A. Effect on breathing of raising end-expiratory lung volume in sleeping laryngectomized man. Respir Physiol. 1990;81:87–98. [PubMed] [Google Scholar]

60. Hayashi F, Coles SK, McCrimmon DR. Respiratory neurons mediating the Breuer-Hering reflex prolongation of expiration in rat. J Neurosci. 1996;16:6526–6536. [PMC free article] [PubMed] [Google Scholar]

61. Hayashi F, McCrimmon DR. Respiratory motor responses to cranial nerve afferent stimulation in rats. Am J Physiol Regul Integr Comp Physiol. 1996;271:R1054–R1062. [PubMed] [Google Scholar]

62. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Med. 2005;2:932–940. [PubMed] [Google Scholar]

63. Henke KG, Badr MS, Skatrud JB, Dempsey JA. Load compensation and respiratory muscle function during sleep. J Appl Physiol. 1992;72:1221–1234. [PubMed] [Google Scholar]

64. Henke KG, Sullivan CE. Effects of high-frequency oscillating pressures on upper airway muscles in humans. J Appl Physiol. 1993;75:856–862. [PubMed] [Google Scholar]

65. Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol. 1990;293:540–580. [PubMed] [Google Scholar]

66. Hermes SM, Mitchell JL, Aicher SA. Most neurons in the nucleus tractus solitarii do not send collateral projections to multiple autonomic targets in the rat brain. Exp Neurol. 2006;198:539–551. [PubMed] [Google Scholar]

67. Horner RL, Innes JA, Murphy K, Guz A. Evidence for reflex upper airway dilator muscle activation by sudden negative airway pressure in man. J Physiol. 1991;436:15–29. [PMC free article] [PubMed] [Google Scholar]

68. Ito S. Multiple projection of vagal non-myelinated afferents to the anterior insular cortex in rats. Neurosci Lett. 1992;148:151–154. [PubMed] [Google Scholar]

69. Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev. 1992;72:165–229. [PubMed] [Google Scholar]

70. Jiang M, Alheid GF, Calandriello T, McCrimmon DR. Parabrachial-lateral pontine neurons link nociception and breathing. Respir Physiol Neurobiol. 2004;143:215–233. [PubMed] [Google Scholar]

71. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol. 1980;193:435–465. [PubMed] [Google Scholar]

72. Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467–508. [PubMed] [Google Scholar]

73. Kalia M, Richter D. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat I. A light microscopic analysis. J Comp Neurol. 1985;241:503–520. [PubMed] [Google Scholar]

74. Kalia M, Richter D. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat II. An ultrastructural analysis. J Comp Neurol. 1985;241:521–535. [PubMed] [Google Scholar]

75. Kalia M, Richter D. Rapidly adapting pulmonary receptor afferents: I. Arborization in the nucleus of the tractus solitarius. J Comp Neurol. 1988;274:560–573. [PubMed] [Google Scholar]

76. Kalia M, Richter D. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius. J Comp Neurol. 1988;274:574–594. [PubMed] [Google Scholar]

77. Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol. 1982;211:248–265. [PubMed] [Google Scholar]

78. Koga T, Fukuda H. Neurons in the nucleus of the solitary tract mediating inputs from emetic vagal afferents and the area postrema to the pattern generator for the emetic act in dogs. Neurosci Res. 1992;14:166–179. [PubMed] [Google Scholar]

79. Korpas J, Jakus J. The expiration reflex from the vocal folds. Acta Physiol Hung. 2000;87:201–215. [PubMed] [Google Scholar]

80. Koshiya N, Smith JC. Neuronal pacemaker for breathing visualized in vitro. Nature. 1999;400:360–363. [PubMed] [Google Scholar]

81. Krolo M, Tonkovic-Capin V, Stucke AG, Stuth EA, Hopp FA, Dean C, Zuperku EJ. Subtype composition and responses of respiratory neurons in the pre-Bötzinger region to pulmonary afferent inputs in dogs. J Neurophysiol. 2005;93:2674–2687. [PubMed] [Google Scholar]

82. Kubin L, Davies RO. Bilateral convergence of pulmonary stretch receptor inputs on I beta-neurons in the cat. J Appl Physiol. 1987;62:1488–1496. [PubMed] [Google Scholar]

83. Kubin L, Davies RO. Sites of termination and relay of pulmonary rapidly adapting receptors as studied by spike-triggered averaging. Brain Res. 1988;443:215–221. [PubMed] [Google Scholar]

84. Kubin L, Davies RO. Central pathways of pulmonary and airway vagal afferents. In: Dempsey JA, Pack AI, editors. Regulation of Breathing. New York: Dekker; 1995. pp. 219–284. [Google Scholar]

85. Kubin L, Davies RO. Mechanisms of airway hypotonia. In: Pack AI, editor. Sleep Apnea Pathogenesis, Diagnosis, and Treatment. New York: Dekker; 2002. pp. 99–154. [Google Scholar]

86. Kubin L, Kimura H, Davies RO. The medullary projections of afferent bronchopulmonary C fibres in the cat as shown by antidromic mapping. J Physiol. 1991;435:207–228. [PMC free article] [PubMed] [Google Scholar]

87. Lee LY, Lin YS, Gu QH, Chung E, Ho CY. Functional morphology and physiological properties of bronchopulmonary C-fiber afferents. Anat Rec. 2003:17–24. [PubMed] [Google Scholar]

88. Lee LY, Pisarri TE. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol. 2001;125:47–65. [PubMed] [Google Scholar]

89. Lindsey BG, Morris KF, Segers LS, Shannon R. Respiratory neuronal assemblies. Respir Physiol. 2000;122:183–196. [PubMed] [Google Scholar]

90. Lipski J, Ezure K, Wong She RB. Identification of neurons receiving input from pulmonary rapidly adapting receptors in the cat. J Physiol. 1991;443:55–77. [PMC free article] [PubMed] [Google Scholar]

91. Lipski J, Kubin L, Jodkowski J. Synaptic action of R beta neurons on phrenic motoneurons studied with spike-triggered averaging. Brain Res. 1983;288:105–118. [PubMed] [Google Scholar]

92. Manabe M, Ezure K. Decrementing expiratory neurons of the Botzinger complex I. Response to lung inflation and axonal projection. Exp Brain Res. 1988;72:150–158. [PubMed] [Google Scholar]

93. Marino PL, Davies RO, Pack AI. The responses of Iβ cells to increases in the rate of lung inflation. Brain Res. 1981;219:289–305. [PubMed] [Google Scholar]

94. Matsuoka T, Mortola JP. Effects of hypoxia and hypercapnia on the Hering-Breuer reflex of the conscious newborn rat. J Appl Physiol. 1995;78:5–11. [PubMed] [Google Scholar]

95. McCrimmon DR, Alheid GF, Zuperku EJ. Reflexes from the lungs and chest wall. In: Laurent GJ, Shapiro SD, editors. Encyclopedia of Respiratory Medicine. Oxford, UK: Elsevier Academic; 2006. pp. 618–625. [Google Scholar]

96. McCrimmon DR, Speck DF, Feldman JL. Role of the ventrolateral region of the nucleus of the tractus solitarius in processing respiratory afferent input from vagus and superior laryngeal nerves. Exp Brain Res. 1987;67:449–459. [PubMed] [Google Scholar]

97. Mellen NM, Roham M, Feldman JL. Afferent modulation of neonatal rat respiratory rhythm in vitro: cellular and synaptic mechanisms. J Physiol. 2004;556:859–874. [PMC free article] [PubMed] [Google Scholar]

98. Mifflin SW. Convergent carotid sinus nerve and superior laryngeal nerve afferent inputs to neurons in the NTS. Am J Physiol Regul Integr Comp Physiol. 1996;271:R870–R880. [PubMed] [Google Scholar]

99. Miserocchi G, Sant’Ambrogio G. Responses of pulmonary stretch receptors to static pressure inflations. Respir Physiol. 1974;21:77–85. [PubMed] [Google Scholar]

100. Mitchell GS. Phrenic nerve responses to lung inflation and hypercapnia in decerebrate dogs. Pflugers Arch. 1990;416:580–585. [PubMed] [Google Scholar]

101. Mitchell GS, Cross BA, Hiramoto T, Scheid P. Interactions between lung stretch and PaCO2 in modulating ventilatory activity in dogs. J Appl Physiol. 1982;53:185–191. [PubMed] [Google Scholar]

102. Miyazaki M, Arata A, Tanaka I, Ezure K. Activity of rat pump neurons is modulated with central respiratory rhythm. Neurosci Lett. 1998;249:61–64. [PubMed] [Google Scholar]

103. Miyazaki M, Tanaka I, Ezure K. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat. Exp Brain Res. 1999;129:191–200. [PubMed] [Google Scholar]

104. Mutoh T, Bonham AC, Joad JP. Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1215–R1223. [PubMed] [Google Scholar]

105. Nishino T. Physiological and pathophysiological implications of upper airway reflexes in humans. Jpn J Physiol. 2000;50:3–14. [PubMed] [Google Scholar]

106. Onimaru H, Homma I. A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci. 2003;23:1478–1486. [PMC free article] [PubMed] [Google Scholar]

107. Ootani S, Umezaki T, Shin T, Murata Y. Convergence of afferents from the SLN and GPN in cat medullary swallowing neurons. Brain Res Bull. 1995;37:397–404. [PubMed] [Google Scholar]

108. Orem J. Central respiratory activity in rapid eye movement sleep: augmenting and late inspiratory cells. Sleep. 1994;17:665–673. [PubMed] [Google Scholar]

109. Otake K, Nakamura Y, Tanaka I, Ezure K. Morphology of pulmonary rapidly adapting receptor relay neurons in the rat. J Comp Neurol. 2001;430:458–470. [PubMed] [Google Scholar]

110. Pantaleo T, Corda M. Respiration-related neurons in the medial nuclear complex of the solitary tract of the cat. Respir Physiol. 1986;64:135–148. [PubMed] [Google Scholar]

111. Parkes MJ, Lara-Munoz JP, Izzo PN, Spyer KM. Responses of ventral respiratory neurones in the rat to vagus stimulation and the functional division of expiration. J Physiol. 1994;476:131–139. [PMC free article] [PubMed] [Google Scholar]

112. Paton JFR. Rhythmic bursting of pre- and post-inspiratory neurones during central apnoea in mature mice. J Physiol. 1997;502:623–639. [PMC free article] [PubMed] [Google Scholar]

113. Paton JFR. Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J Neurophysiol. 1998;79:2365–2373. [PubMed] [Google Scholar]

114. Paton JFR. Nucleus tractus solitarii: integrating structures. Exp Physiol. 1999;84:815–833. [PubMed] [Google Scholar]

115. Paton JFR, Li YW, Deuchars J, Kasparov S. Properties of solitary tract neurons receiving inputs from the sub-diaphragmatic vagus nerve. Neuroscience. 2000;95:141–153. [PubMed] [Google Scholar]

116. Paton JFR, Li YW, Kasparov S. Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract. Neuroscience. 1999;93:143–154. [PubMed] [Google Scholar]

117. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. San Diego, CA: Elsevier Academic; 2005. [Google Scholar]

118. Perrin J, Crousillat J. The projection of vagal afferents on the cerebellar vermis of the cat. J Auton Nerv Syst. 1985;13:175–177. [PubMed] [Google Scholar]

119. Poon CS. Organization of central pathways mediating the Hering-Breuer reflex and carotid chemoreflex. Adv Exp Med Biol. 2004;551:95–100. [PubMed] [Google Scholar]

120. Rabbette PS, Stocks J. Influence of volume dependency and timing of airway occlusions on the Hering-Breuer reflex in infants. J Appl Physiol. 1998;85:2033–2039. [PubMed] [Google Scholar]

121. Radna RJ, MacLean PD. Vagal elicitation of respiratory-type and other unit responses in striopallidum of squirrel monkeys. Brain Res. 1981;213:29–44. [PubMed] [Google Scholar]

122. Radna RJ, MacLean PD. Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys. Brain Res. 1981;213:45–61. [PubMed] [Google Scholar]

123. Sant’Ambrogio G, Tsubone H, Sant’Ambrogio FB. Sensory information from the upper airway: role in the control of breathing. Respir Physiol. 1995;102:1–16. [PubMed] [Google Scholar]

124. Saper CB. Central autonomic system. In: Paxinos G, editor. The Rat Nervous System. San Diego, CA: Elsevier Academic; 2004. pp. 761–796. [Google Scholar]

125. Schelegle ES. Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat Rec. 2003;270A:11–16. [PubMed] [Google Scholar]

126. Sekizawa S, Joad JP, Bonham AC. Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the guinea pig nucleus tractus solitarii. J Physiol. 2003;552:547–559. [PMC free article] [PubMed] [Google Scholar]

127. Shaw CF, Cohen MI, Barnhardt R. Inspiratory-modulated neurons of the rostrolateral pons: effects of pulmonary afferent input. Brain Res. 1989;485:179–184. [PubMed] [Google Scholar]

128. Smith CA, Henderson KS, Xi L, Chow CM, Eastwood PR, Dempsey JA. Neural-mechanical coupling of breathing in REM sleep. J Appl Physiol. 1997;83:1923–1932. [PubMed] [Google Scholar]

129. Song G, Poon CS. Functional and structural models of pontine modulation of mechanoreceptor and chemoreceptor reflexes. Respir Physiol Neurobiol. 2004;143:281–292. [PubMed] [Google Scholar]

130. Song G, Yu Y, Poon CS. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci. 2006;26:300–310. [PMC free article] [PubMed] [Google Scholar]

131. St. John WM. Influence of pulmonary inflations on discharge of pontile respiratory neurons. J Appl Physiol. 1987;63:2231–2239. [PubMed] [Google Scholar]

132. Thach BT. Maturation and transformation of reflexes that protect the laryngeal airway from liquid aspiration from fetal to adult life. Am J Med. 2001;111[Suppl 8A]:69S–77S. [PubMed] [Google Scholar]

133. Tong G, Robertson LT, Brons J. Vagal and somatic representation by the climbing fiber system in lobule V of the cat cerebellum. Brain Res. 1991;552:58–66. [PubMed] [Google Scholar]

134. Tonkovic-Capin M, Zuperku EJ, Stuth EA, Bajic J, Dogas Z, Hopp FA. Effect of central CO2 drive on lung inflation responses of expiratory bulbospinal neurons in dogs. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1606–R1618. [PubMed] [Google Scholar]

135. Trippenbach T. Pulmonary reflexes and control of breathing during development. Biol Neonate. 1994;65:205–210. [PubMed] [Google Scholar]

136. Wei JY, Shen E. Vagal expiratory afferent discharges during spontaneous breathing. Brain Res. 1985;335:213–219. [PubMed] [Google Scholar]

137. Widdicombe J. Airway receptors. Respir Physiol. 2001;125:3–15. [PubMed] [Google Scholar]

138. Widdicombe J. Functional morphology and physiology of pulmonary rapidly adapting receptors [RARs] Anat Rec. 2003;270A:2–10. [PubMed] [Google Scholar]

139. Wilson CG, Bonham AC. Effect of cardiopulmonary C fibre activation on the firing activity of ventral respiratory group neurones in the rat. J Physiol. 1997;504:453–466. [PMC free article] [PubMed] [Google Scholar]

140. Wilson CG, Zhang Z, Bonham AC. Non-NMDA receptors transmit cardiopulmonary C fibre input in nucleus tractus solitarii in rats. J Physiol. 1996;496:773–785. [PMC free article] [PubMed] [Google Scholar]

141. Yu J. Airway mechanosensors. Respir Physiol Neurobiol. 2005;148:217–243. [PubMed] [Google Scholar]

142. Zuperku EJ, Hopp FA. Control of discharge patterns of medullary respiratory neurons by pulmonary vagal afferent inputs. Am J Physiol Regul Integr Comp Physiol. 1987;253:R809–R820. [PubMed] [Google Scholar]

143. Zuperku EJ, McCrimmon DR. Gain modulation of respiratory neurons. Respir Physiol Neurobiol. 2002;131:121–133. [PubMed] [Google Scholar]

Page 2

Major classes of pulmonary receptors and their reflex effects

Receptor TypeReflex Effects
SARBreuer-Hering reflex: inspiratory termination, expiratory facilitationEnhancement of inspiratory effortBronchodilation

Tachycardia

RARCoughBroncho- and laryngoconstrictionAugmented breath/gasp [on stimulation of RAR by a large, rapid lung inflation]Irregular, augmented inspiration and shortened expiration [on maintained airwaydeflation or inhalation of irritants]

Airway mucus secretion

Slowly adapting deflation receptors [present in rats and rabbits; some
may be classified as RARs based on lung deflation tests]
Unknown
Bronchopulmonary C fibersRapid, shallow breathingApnea [on synchronous chemical stimulation]Broncho- and laryngoconstrictionAirway mucus secretionVasodilatation [pulmonary C fibers only]

Bradycardia

Video liên quan

Chủ Đề