Từ các chữ số 0, 1, 2, 4, 5, 7 lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 4

Phương pháp giải:

- Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.

- Xét các trường hợp sau:

   TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \].

             + \[a,\,\,b,\,\,c \equiv 3\,\,\left[ {\bmod 1} \right] \Rightarrow a,\,\,b,\,\,c \in \left\{ {1;4;7} \right\}\].

             + \[a,\,\,b,\,\,c \equiv 3\,\,\left[ {\bmod 2} \right] \Rightarrow a,\,\,b,\,\,c \in \left\{ {2;5;8} \right\}\].

             + Trong 3 số \[a,\,\,b,\,\,c\] có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

   TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \].

             + Trong 3 số \[a,\,\,b,\,\,c\] có 2 số chia hết cho 3, 1 số chia 3 dư 1.

             + Trong 3 số \[a,\,\,b,\,\,c\] có 1 số chia hết cho 3, 2 số chia 3 dư 3.

             + Trong 3 số \[a,\,\,b,\,\,c\] có 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Lời giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} \,\,\left[ {a \ne 0} \right]\].

Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.

\[ \Rightarrow d \in \left\{ {0;5} \right\}\].

TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \].

Để số cần tìm chia hết cho 3 thì \[a + b + c\,\, \vdots \,\,3\].

Ta có các nhóm: \[\left\{ \begin{array}{l}\left\{ {0;9} \right\}\,\, \equiv \,\,3\left[ {\bmod 0} \right]\\\left\{ {1;4;7} \right\} \equiv 3\,\,\left[ {\bmod 1} \right]\\\left\{ {2;8} \right\} \equiv 3\,\,\left[ {\bmod 2} \right]\end{array} \right.\]

\[\text { Vì } n \text { không chia hết cho } 5 \Rightarrow a_{4} \text { phải khác } 0 \text { và khác } 5 \text { . }\]

\[\text { Ta có } \left.4 \text { cách chon } a_{4} \text { [chọn } 1,2,7,9\right] \text { , có } 4 \text { cách chọn } a_{1} \text { và có } \mathrm{A}_{4}^{2} \text { cách chọn } \overline{a_{2} a_{3}} \text { . }\]

adsense

\[\text { Suy ra ta có } 4 \cdot 4 \cdot \mathrm{A}_{4}^{2}=192 \text { số thoả mãn yêu cầu bài toán. }\]

Có bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số 1,2,3,4,5,6,7,8,9 .Chọn ngẫu nhiên 1 số từ tập S .Tính xác suất để số được chọn chia hết cho 3

@chanhquocnghiem:
Đây cũng là 1 minh chứng cho bài toán được giải quyết tốt khá là nhẹ nhàng, ngắn gọn khi tiếp cận bằng pp "mộc mạc, cổ điển " quen thuộc, trong khi đó nếu dùng hàm sinh thì bài giải khá dài, cồng kềnh và phải vận dụng thêm một ít kiến thức toán học khác.
a/ Cách tiếp cận "chân phương ", truyền thống:[Mời bạn gì đó nên xem phần này nhé ] theo mình thì bạn phân thành 3 tập :$A_0=\left \{ 3,6,9 \right \},A_1=\left \{ 1,4,7 \right \},A_2=\left \{ 2,5,8 \right \} $. Sau đó bạn tính số tập con có 4 phần tử mà tổng các phần tử chia hết cho 3. Tdụ : số cách chọn 2 ptử thuộc $A_0$ + 1 ptử thuộc $A_1$ + 1 ptử thuộc $A_2$ là : $C^{1}_{3}.C^{1}_{3}.C^{1}_{3}=27$..vv... Cứ tính như vậy, bạn sẽ có số tập con có 4 ptử và tổng 4 ptử chia hết cho 3 là $42$. Thực hiện hoán vị 4 ptử trong mỗi tập, bạn sẽ được số các số thỏa yêu cầu đề bài là $4!42$. Từ đây bạn dễ dàng tính được XS mà đề bài yêu cầu.
b/ Tiếp cận bằng hàm sinh :
Ta lập hàm sinh $G[x,y]$, trong đó $x$ mang thông tin là tổng các phần tử, $y$ mang thông tin là số phần tử. Ta có :
$$G[x,y]=[1+xy][1+x^2y][1+x^3y]...[1+x^9y]$$
Khai triển dưới dạng tổng thì:
$G[x,y]=\sum_{n,k}^{} a_{n,k}x^ny^k$
Gọi $\omega ^{2\pi i/3} $ là một căn bậc 3 của đơn vị và $N$ là số tập con $ k$ phần tử và tổng k phần tử trong tập con này là $n$ thì :
$N=\sum_{k\geq 0, 3\mid n}^{}a_{n,k}y^k=\frac{G[1, y] +G[\omega, y]+G[\omega^2, y] }{3}$
Ta có :
$G[1,y]=[1+y]^9$
$G[\omega^j,y]=[1+\omega^jy][1+\omega^{2j}y]...[1+\omega^{9j}y]=\left [ [1+\omega y][1+\omega^{2}y] [1+\omega^{3}y] \right ]^3, \forall j\geq 1$
Dễ thấy phương trình $y^3+1=0$ có nghiệm là $-e^{-1}, -e^{-2}, -e^{-3} $ nên :
$[1+\omega y][1+\omega^{2}y] [1+\omega^{3}y]=1+y^3$
Suy ra :
$N=\sum_{k\geq 0, 3\mid n}^{}a_{n,k}y^k=\frac{[1+y]^9+2[1+y^3]^3}{3}$
Với $k=4$ ta có :
$N=\frac{\binom{9}{4}+2[1+y^3]^3}{3}=\frac{\binom{9}{4}}{3}=\frac{126}{3}=42$
Suy ra số các số thỏa yêu cầu đề bài là $\boxed {4!42}$
Chú thích :
- Số hạng thứ hai trong tử số của $N$ bằng $0$ vì sau khi khai triển số hạng này thì trong khai triển không có số hạng nào chứa $y^4$.

PS: Nhân đây, cho phép em hỏi thăm anh Chanhquocnghiem : Lâu rồi không thấy anh viết bài trên forum, anh mạnh khỏe chứ?

Bài viết đã được chỉnh sửa nội dung bởi Nobodyv3: 15-08-2022 - 06:19

Chủ Đề