General Topology solution manual

You're Reading a Free Preview
Pages 9 to 14 are not shown in this preview.

You're Reading a Free Preview
Pages 18 to 24 are not shown in this preview.

You're Reading a Free Preview
Pages 28 to 31 are not shown in this preview.

You're Reading a Free Preview
Pages 35 to 53 are not shown in this preview.

General TopologyA Solution Manual forWillard[2004]Jianfei ShenSchool of Economics, The University of New South WalesSydney, AustraliaOctober 15, 2011

Related Textbook Solutions

See more

PrefaceSydney,Jianfei ShenOctober 15, 2011v

ContentsPreface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v1Set Theory and Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.1Set Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Topological Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92.1Fundamental Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92.2Neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132.3Bases and Subbases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163New Spaces from Old. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193.1Subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193.2Continuous Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193.3Product Spaces, Weak Topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243.4Quotient Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.1Inadequacy of Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.2Nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324.3Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345Separation and Countability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375.1The Separation Axioms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375.2Regularity and Complete Regularity. . . . . . . . . . . . . . . . . . . . . . . . . . . .395.3Normal Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405.4Countability Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416Compactness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .436.1Compact Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45ix

AcronymsRthe set of real numbersIOE0; 1ŁPRXQxi

1SET THEORY AND METRIC SPACES1.1Set Theory1A. Russell’s ParadoxIExercise1.The phenomenon to be presented here was first exhibited byRussell in 1901, and consequently is known asRussell’s Paradox.Suppose we allow as sets thingsAfor whichA2A. LetPbe the set of allsets. ThenPcan be divided into two nonempty subsets,P1D˚A2PWAAandP2D fA2PWA2Ag. Show that this results in the contradiction:P12P1[]P1P1. Does our [naive] restriction on sets given in 1.1 eliminate thecontradiction?Proof.IfP12P1, thenP12P2, i.e.,P1P1. But ifP1P1, thenP12P1. Acontradiction.ut1B. De Morgan’s laws and the distributive lawsIExercise2.a.AXT2BDS2.AXB /.b.B[T2BDT2.B[B /.c.IfAnmis a subset ofAfornD1; 2; : : :andmD1; 2; : : :, is it necessarily truethat1[nD1241\mD1Anm35D1\mD1241[nD1Anm35Proof.[a]Ifx2AXT2B, thenx2AandxT2B; thus,x2AandxBfor some, sox2.AXB /for some; hencex2S2.AXB /.On the other hand, ifx2S2.AXB /, thenx2AXBfor some2,i.e.,x2AandxBfor some2. Thus,x2AandxT2B; that is,x2AXT2B.1

2CHAPTER 1SET THEORY AND METRIC SPACES[b]Ifx2B[T2B, thenx2Bfor all, thenx2.B[B /for all, i.e.,x2T2.B[B /. On the other hand, ifx2T2.B[B /, thenx2.B[B /for all, i.e.,x2Borx2Bfor all; that is,x2B[T2B.[c]They are one and the same set.ut1C. Ordered pairsIExercise3.Show that, if.x1; x2/is defined to be˚fx1g;fx1; x2g, then.x1; x2/D.y1; y2/iffx1Dy1andx2Dy2.Proof.Ifx1Dy1andx2Dy2, then, clearly,.x1; x2/D˚fx1g;fx1; x2gD˚fy1g;fy1; y2gD.y1; y2/. Now assume that˚fx1g;fx1; x2gD˚fy1g;fy1; y2g.Ifx1¤x2, thenfx1g D fy1gandfx1; x2g D fy1; y2g. So, first,x1Dy1and thenfx1; x2g D fy1; y2gimplies thatx2Dy2. Ifx1Dx2, then˚fx1g;fx1; x1gD˚fx1g.

Upload your study docs or become a

Course Hero member to access this document

Upload your study docs or become a

Course Hero member to access this document

End of preview. Want to read all 57 pages?

Upload your study docs or become a

Course Hero member to access this document

Topology, Metric space, Proof Let, proof, X

Video liên quan

Chủ Đề