Which aspect of memory is hardest hit in late adulthood?

1. Park, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychology and aging. 2002;17(2):299–320. . [PubMed] [Google Scholar]

2. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21–36. Epub 2001/08/30. 10.1006/nimg.2001.0786 . [PubMed] [CrossRef] [Google Scholar]

3. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex. 1997;7(3):268–82. . [PubMed] [Google Scholar]

4. Cabeza R. Cognitive neuroscience of aging: Contributions of functional neuroimaging. Scand J Psychol. 2001;42(3):277–86. 10.1111/1467-9450.00237 WOS:000169970000011. [PubMed] [CrossRef] [Google Scholar]

5. Fabiani M. It was the best of times, it was the worst of times: A psychophysiologist's view of cognitive aging. Psychophysiology. 2012;49(3):283–304. 10.1111/J.1469-8986.2011.01331.X WOS:000299927600001. [PubMed] [CrossRef] [Google Scholar]

6. Rajah MN, D'Esposito M. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain: a journal of neurology. 2005;128:1964–83. 10.1093/Brain/Awh608 WOS:000231694100003. [PubMed] [CrossRef] [Google Scholar]

7. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R. Que PASA? The posterior-anterior shift in aging. Cereb Cortex. 2008;18(5):1201–9. Epub 2007/10/11. bhm155 [pii] 10.1093/cercor/bhm155 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Mendelsohn AR, Larrick JW. Reversing age-related decline in working memory. Rejuvenation Res. 2011;14(5):557–9. Epub 2011/10/22. 10.1089/rej.2011.1247 . [PubMed] [CrossRef] [Google Scholar]

9. Peich MC, Husain M, Bays PM. Age-related decline of precision and binding in visual working memory. Psychol Aging. 2013;28(3):729–43. Epub 2013/08/28. 10.1037/a0033236 2013-29995-001 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M, et al. Neuronal basis of age-related working memory decline. Nature. 2011;476(7359):210–3. Epub 2011/07/29. 10.1038/nature10243 nature10243 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300(9):1027–37. 10.1001/jama.300.9.1027 . [PubMed] [CrossRef] [Google Scholar]

12. Kamegaya T, Maki Y, Yamagami T, Yamaguchi T, Murai T, Yamaguchi H. Pleasant physical exercise program for prevention of cognitive decline in community-dwelling elderly with subjective memory complaints. Geriatr Gerontol Int. 2012;12(4):673–9. Epub 2012/04/04. 10.1111/j.1447-0594.2012.00840.x . [PubMed] [CrossRef] [Google Scholar]

13. Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front Aging Neurosci. 2013;5:8 Epub 2013/03/28. 10.3389/fnagi.2013.00008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302(6):627–37. 10.1001/jama.2009.1144 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Miller KJ, Siddarth P, Gaines JM, Parrish JM, Ercoli LM, Marx K, et al. The memory fitness program: cognitive effects of a healthy aging intervention. Am J Geriatr Psychiatry. 2012;20(6):514–23. 10.1097/JGP.0b013e318227f821 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Barnes LL, Mendes de Leon CF, Wilson RS, Bienias JL, Evans DA. Social resources and cognitive decline in a population of older African Americans and whites. Neurology. 2004;63(12):2322–6. Epub 2004/12/30. 63/12/2322 [pii]. . [PubMed] [Google Scholar]

17. Tangney CC, Kwasny MJ, Li H, Wilson RS, Evans DA, Morris MC. Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. The American journal of clinical nutrition. 2011;93(3):601–7. 10.3945/ajcn.110.007369 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Lustig C, Shah P, Seidler R, Reuter-Lorenz PA. Aging, training, and the brain: a review and future directions. Neuropsychol Rev. 2009;19(4):504–22. Epub 2009/10/31. 10.1007/s11065-009-9119-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Noack H, Lovden M, Schmiedek F, Lindenberger U. Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor Neurol Neurosci. 2009;27(5):435–53. Epub 2009/10/23. 10.3233/RNN-2009-0496 212N711846130566 [pii]. . [PubMed] [CrossRef] [Google Scholar]

20. Morrison AB, Chein JM. Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon Bull Rev. 2011;18(1):46–60. Epub 2011/02/18. 10.3758/s13423-010-0034-0 . [PubMed] [CrossRef] [Google Scholar]

21. Shipstead Z, Redick TS, Engle RW. Is working memory training effective? Psychol Bull. 2012;138(4):628–54. Epub 2012/03/14. 10.1037/a0027473 2012-06385-001 [pii]. . [PubMed] [CrossRef] [Google Scholar]

22. Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, et al. Putting brain training to the test. Nature. 2010;465(7299):775–U6. 10.1038/Nature09042 WOS:000278551800044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Mahncke HW, Connor BB, Appelman J, Ahsanuddin ON, Hardy JL, Wood RA, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A. 2006;103(33):12523–8. Epub 2006/08/05. 0605194103 [pii] 10.1073/pnas.0605194103. [PMC free article] [PubMed] [Google Scholar]

24. Buschkuehl M, Jaeggi SM, Hutchison S, Perrig-Chiello P, Dapp C, Muller M, et al. Impact of working memory training on memory performance in old-old adults. Psychology and aging. 2008;23(4):743–53. Epub 2009/01/15. 10.1037/a0014342 . [PubMed] [CrossRef] [Google Scholar]

25. Dahlin E, Nyberg L, Backman L, Neely AS. Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psychology and aging. 2008;23(4):720–30. Epub 2009/01/15. 10.1037/a0014296 . [PubMed] [CrossRef] [Google Scholar]

26. Li SC, Schmiedek F, Huxhold O, Rocke C, Smith J, Lindenberger U. Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology and aging. 2008;23(4):731–42. Epub 2009/01/15. 10.1037/a0014343 . [PubMed] [CrossRef] [Google Scholar]

27. Karbach J, Kray J. How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev Sci. 2009;12(6):978–90. Epub 2009/10/21. 10.1111/j.1467-7687.2009.00846.x DESC846 [pii]. . [PubMed] [CrossRef] [Google Scholar]

28. Chein JM, Morrison AB. Expanding the mind's workspace: training and transfer effects with a complex working memory span task. Psychon Bull Rev. 2010;17(2):193–9. Epub 2010/04/13. 10.3758/PBR.17.2.193 17/2/193 [pii]. . [PubMed] [CrossRef] [Google Scholar]

29. Schmiedek F, Lovden M, Lindenberger U. Hundred Days of Cognitive Training Enhance Broad Cognitive Abilities in Adulthood: Findings from the COGITO Study. Front Aging Neurosci. 2010;2 Epub 2010/08/21. 10.3389/fnagi.2010.00027 27 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Richmond LL, Morrison AB, Chein JM, Olson IR. Working memory training and transfer in older adults. Psychology and aging. 2011;26(4):813–22. Epub 2011/06/29. 10.1037/a0023631 . [PubMed] [CrossRef] [Google Scholar]

31. Brehmer Y, Westerberg H, Backman L. Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in human neuroscience. 2012;6:63 Epub 2012/04/04. 10.3389/fnhum.2012.00063 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Gajewski PD, Falkenstein M. Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical, and relaxation training. Frontiers in human neuroscience. 2012;6:130 Epub 2012/05/18. 10.3389/fnhum.2012.00130 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, Shigemune Y, et al. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. PLoS One. 2012;7(1):e29676 Epub 2012/01/19. 10.1371/journal.pone.0029676 PONE-D-11-07694 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Nouchi R, Taki Y, Takeuchi H, Hashizume H, Nozawa T, Sekiguchi A, et al. Beneficial effects of short-term combination exercise training on diverse cognitive functions in healthy older people: study protocol for a randomized controlled trial. Trials. 2012;13:200 Epub 2012/10/31. 10.1186/1745-6215-13-200 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. van Muijden J, Band GP, Hommel B. Online games training aging brains: limited transfer to cognitive control functions. Front Hum Neurosci. 2012;6:221 Epub 2012/08/23. 10.3389/fnhum.2012.00221 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296(23):2805–14. Epub 2006/12/21. 296/23/2805 [pii] 10.1001/jama.296.23.2805 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Margrett JA, Willis SL. In-home cognitive training with older married couples: individual versus collaborative learning. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2006;13(2):173–95. Epub 2006/06/30. QN51624RM2442Q40 [pii] 10.1080/138255890969285 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Dahlin E, Backman L, Neely AS, Nyberg L. Training of the executive component of working memory: subcortical areas mediate transfer effects. Restor Neurol Neurosci. 2009;27(5):405–19. Epub 2009/10/23. G072655216169220 [pii] 10.3233/RNN-2009-0492. 10.3233/RNN-2009-0492 [PubMed] [CrossRef] [Google Scholar]

39. Nyberg L, Dahlin E, Stigsdotter Neely A, Backman L. Neural correlates of variable working memory load across adult age and skill: dissociative patterns within the fronto-parietal network. Scand J Psychol. 2009;50(1):41–6. Epub 2008/08/19. 10.1111/j.1467-9450.2008.00678.x SJOP678 [pii]. . [PubMed] [CrossRef] [Google Scholar]

40. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2003;114(11):2220–2; author reply 2–3. . [PubMed] [Google Scholar]

41. Kessler SK, Turkeltaub PE, Benson JG, Hamilton RH. Differences in the experience of active and sham transcranial direct current stimulation. Brain stimulation. 2012;5(2):155–62. 10.1016/j.brs.2011.02.007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527 Pt 3:633–9. Epub 2000/09/16. PHY_1055 [pii]. [PMC free article] [PubMed] [Google Scholar]

43. Rosenkranz K, Nitsche MA, Tergau F, Paulus W. Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci Lett. 2000;296(1):61–3. Epub 2000/12/02. S0304-3940(00)01621-9 [pii]. . [PubMed] [Google Scholar]

44. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45(2):702–7. Epub 2004/01/28. . [PubMed] [Google Scholar]

45. Paulus W. Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5):602–17. Epub 2011/08/09. 10.1080/09602011.2011.557292 . [PubMed] [CrossRef] [Google Scholar]

46. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. 2011;17(1):37–53. 10.1177/1073858410386614 . [PubMed] [CrossRef] [Google Scholar]

47. Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord. 2006;8(2):203–4. Epub 2006/03/18. BDI291 [pii] 10.1111/j.1399-5618.2006.00291.x . [PubMed] [CrossRef] [Google Scholar]

48. Brunoni AR, Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Boggio PS, et al. Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):96–101. Epub 2010/09/22. 10.1016/j.pnpbp.2010.09.010 S0278-5846(10)00361-1 [pii]. . [PubMed] [CrossRef] [Google Scholar]

49. Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71(7):493–8. 10.1212/01.wnl.0000317060.43722.a3 . [PubMed] [CrossRef] [Google Scholar]

50. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. Journal of the neurological sciences. 2006;249(1):31–8. 10.1016/j.jns.2006.05.062 . [PubMed] [CrossRef] [Google Scholar]

51. Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke. 2011;42(3):819–21. Epub 2011/01/15. 10.1161/STROKEAHA.110.600288 STROKEAHA.110.600288 [pii]. . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–36. Epub 2010/04/17. STROKEAHA.109.576785 [pii] 10.1161/STROKEAHA.109.576785 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451–3. Epub 2007/12/22. jnnp.2007.135277 [pii] 10.1136/jnnp.2007.135277 . [PubMed] [CrossRef] [Google Scholar]

54. Suzuki K, Fujiwara T, Tanaka N, Tsuji T, Masakado Y, Hase K, et al. Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers. Int J Neurosci. 2012;122(11):675–81. Epub 2012/07/04. 10.3109/00207454.2012.707715 . [PubMed] [CrossRef] [Google Scholar]

55. Kim DY, Ohn SH, Yang EJ, Park CI, Jung KJ. Enhancing motor performance by anodal transcranial direct current stimulation in subacute stroke patients. Am J Phys Med Rehabil. 2009;88(10):829–36. Epub 2009/10/01. 10.1097/PHM.0b013e3181b811e3 00002060-200910000-00008 [pii]. . [PubMed] [CrossRef] [Google Scholar]

56. Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5. Epub 2005/09/09. . [PubMed] [Google Scholar]

57. Hummel FC, Heise K, Celnik P, Floel A, Gerloff C, Cohen LG. Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging. 2010;31(12):2160–8. Epub 2009/02/10. 10.1016/j.neurobiolaging.2008.12.008 S0197-4580(08)00422-3 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC. Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol. 2013;73(1):10–5. Epub 2012/12/12. 10.1002/ana.23761 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Ross LA, McCoy D, Coslett HB, Olson IR, Wolk DA. Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes. Front Aging Neurosci. 2011;3:16 Epub 2011/10/22. 10.3389/fnagi.2011.00016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Boggio PS, Campanha C, Valasek CA, Fecteau S, Pascual-Leone A, Fregni F. Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci. 2010;31(3):593–7. Epub 2010/01/29. 10.1111/j.1460-9568.2010.07080.x EJN7080 [pii]. . [PubMed] [CrossRef] [Google Scholar]

61. Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain stimulation. 2011;4(2):84–9. 10.1016/j.brs.2010.06.004 . [PubMed] [CrossRef] [Google Scholar]

62. Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neuroscience letters. 2012;521(2):148–51. 10.1016/j.neulet.2012.05.074 . [PubMed] [CrossRef] [Google Scholar]

63. Berryhill ME, Wencil EB, Branch Coslett H, Olson IR. A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett. 2010;479(3):312–6. Epub 2010/06/24. S0304-3940(10)00716-0 [pii] 10.1016/j.neulet.2010.05.087 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53. Epub 2012/11/06. 10.1016/j.brs.2012.10.001 S1935-861X(12)00190-8 [pii]. . [PubMed] [CrossRef] [Google Scholar]

65. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30. Epub 2005/07/07. 10.1007/s00221-005-2334-6 . [PubMed] [CrossRef] [Google Scholar]

66. Heimrath K, Sandmann P, Becke A, Muller NG, Zaehle T. Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Front Psychiatry. 2012;3:56 Epub 2012/06/23. 10.3389/fpsyt.2012.00056 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Jeon SY, Han SJ. Improvement of the working memory and naming by transcranial direct current stimulation. Ann Rehabil Med. 2012;36(5):585–95. Epub 2012/11/28. 10.5535/arm.2012.36.5.585 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Jones KT, Berryhill ME. Parietal contributions to visual working memory depend on task difficulty. Frontiers in psychiatry. 2012;3:81 10.3389/fpsyt.2012.00081 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Marshall L, Molle M, Siebner HR, Born J. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC neuroscience. 2005;6:23 Epub 2005/04/12. 1471-2202-6-23 [pii] 10.1186/1471-2202-6-23 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Mulquiney PG, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol. 2011;122(12):2384–9. Epub 2011/06/15. 10.1016/j.clinph.2011.05.009 S1388-2457(11)00358-0 [pii]. . [PubMed] [CrossRef] [Google Scholar]

71. Mylius V, Jung M, Menzler K, Haag A, Khader PH, Oertel WH, et al. Effects of transcranial direct current stimulation on pain perception and working memory. Eur J Pain. 2012;16(7):974–82. Epub 2012/02/18. 10.1002/j.1532-2149.2011.00105.x . [PubMed] [CrossRef] [Google Scholar]

72. Ohn SH, Park CI, Yoo WK, Ko MH, Choi KP, Kim GM, et al. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19(1):43–7. Epub 2008/02/19. 10.1097/WNR.0b013e3282f2adfd 00001756-200801080-00008 [pii]. . [PubMed] [CrossRef] [Google Scholar]

73. Zaehle T, Sandmann P, Thorne JD, Jancke L, Herrmann CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC neuroscience. 2011;12:2 Epub 2011/01/08. 10.1186/1471-2202-12-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain Stimul. 2011. Epub 2011/08/16. S1935-861X(11)00088-X [pii] 10.1016/j.brs.2011.06.006 . [PubMed] [CrossRef] [Google Scholar]

75. Boggio PS, Valasek CA, Campanha C, Giglio AC, Baptista NI, Lapenta OM, et al. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer's disease. Neuropsychol Rehabil. 2011;21(5):703–16. Epub 2011/09/29. 10.1080/09602011.2011.617943 . [PubMed] [CrossRef] [Google Scholar]

76. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(4):444–7. Epub 2008/11/04. jnnp.2007.141853 [pii] 10.1136/jnnp.2007.141853 . [PubMed] [CrossRef] [Google Scholar]

77. Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil. 2009;88(5):404–9. Epub 2009/07/22. doi: 10.1097/PHM.0b013e3181a0e4cb 00002060-200905000-00008 [pii]. . [PubMed] [Google Scholar]

78. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009;29(22):7271–7. Epub 2009/06/06. 29/22/7271 [pii] 10.1523/JNEUROSCI.0065-09.2009 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Park SH, Seo JH, Kim YH, Ko MH. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014;25(2):122–6. 10.1097/Wnr.0000000000000080 WOS:000329810300010. [PubMed] [CrossRef] [Google Scholar]

80. Unsworth N, Heitz RP, Schrock JC, Engle RW. An automated version of the operation span task. Behav Res Methods. 2005;37(3):498–505. Epub 2006/01/13. . [PubMed] [Google Scholar]

81. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. Epub 1975/11/01. . [PubMed] [Google Scholar]

82. Wechsler D. Wechsler Adult Intelligenve Scale-Fouth Edition. San Antonio, TX: Pearson; 2008. [Google Scholar]

83. Stroop JR. Studies of interference in serial verbal reactions. Journal of Experimental Psychology. 1935;18(6):643–62. 10.1037/h0054651 [CrossRef] [Google Scholar]

84. Kirchner WK. Age differences in short-term retention of rapidly changing information. J Exp Psychol. 1958;55(4):352–8. Epub 1958/04/01. . [PubMed] [Google Scholar]

85. Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci U S A. 2008;105(19):6829–33. Epub 2008/04/30. 10.1073/pnas.0801268105 0801268105 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Rossion B, Pourtois G. Revisiting Snodgrass and Vanderwart's object pictorial set: the role of surface detail in basic-level object recognition. Perception. 2004;33(2):217–36. . [PubMed] [Google Scholar]

87. Klem GH, Luders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3–6. Epub 1999/12/11. . [PubMed] [Google Scholar]

88. Galea JM, Celnik P. Brain polarization enhances the formation and retention of motor memories. Journal of neurophysiology. 2009;102(1):294–301. 10.1152/jn.00184.2009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50. Epub 2006/01/24. S1388-2457(05)00507-9 [pii] 10.1016/j.clinph.2005.12.003 . [PubMed] [CrossRef] [Google Scholar]

90. Elmer S, Burkard M, Renz B, Meyer M, Jancke L. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behav Brain Funct. 2009;5:29 Epub 2009/07/17. 1744-9081-5-29 [pii] 10.1186/1744-9081-5-29 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Hsu TY, Tseng LY, Yu JX, Kuo WJ, Hung DL, Tzeng OJ, et al. Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage. 2011;56(4):2249–57. Epub 2011/04/05. 10.1016/j.neuroimage.2011.03.059 . [PubMed] [CrossRef] [Google Scholar]

92. Tseng P, Hsu TY, Chang CF, Tzeng OJ, Hung DL, Muggleton NG, et al. Unleashing Potential: Transcranial Direct Current Stimulation over the Right Posterior Parietal Cortex Improves Change Detection in Low-Performing Individuals. J Neurosci. 2012;32(31):10554–61. Epub 2012/08/03. 32/31/10554 [pii] 10.1523/JNEUROSCI.0362-12.2012 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901. WOS:000172334700031. [PubMed] [Google Scholar]

94. Antal A, Nitsche MA, Paulus W. Transcranial magnetic and direct current stimulation of the visual cortex. Suppl Clin Neurophysiol. 2003;56:291–304. Epub 2003/12/18. . [PubMed] [Google Scholar]

95. Filmer HL, Mattingley JB, Dux PE. Improved multitasking following prefrontal tDCS. Cortex. 2013;49(10):2845–52. Epub 2013/10/02. 10.1016/j.cortex.2013.08.015 S0010-9452(13)00217-7 [pii]. . [PubMed] [CrossRef] [Google Scholar]

96. Truong DQ, Magerowski G, Blackburn GL, Bikson M, Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. Neuroimage Clin. 2013;2:759–66. Epub 2013/10/26. 10.1016/j.nicl.2013.05.011 S2213-1582(13)00067-3 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Jones K, Gozenman F, Berryhill M. Transcranial Direct Current Stimulation Facilitates Episodic Memory Encoding. Journal of Cognitive Neuroscience. 2013:82-. WOS:000317030500285. [Google Scholar]

98. Jones KT, Gozenman F, Berryhill ME. The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. NeuroImage. 2015;105:238–47. 10.1016/j.neuroimage.2014.11.012 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Karbach J, Verhaeghen P. Making Working Memory Work: A Meta-Analysis of Executive-Control and Working Memory Training in Older Adults. Psychol Sci. 2014. Epub October 8, 2014. [PMC free article] [PubMed] [Google Scholar]

100. Verhaeghen P, Cerella J, Basak C. A working memory workout: how to expand the focus of serial attention from one to four items in 10 hours or less. J Exp Psychol Learn Mem Cogn. 2004;30(6):1322–37. Epub 2004/11/04. 2004-19815-014 [pii] 10.1037/0278-7393.30.6.1322 . [PubMed] [CrossRef] [Google Scholar]

102. Snowball A, Tachtsidis I, Popescu T, Thompson J, Delazer M, Zamarian L, et al. Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol. 2013;23(11):987–92. Epub 2013/05/21. 10.1016/j.cub.2013.04.045 S0960-9822(13)00486-7 [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Richmond L, Wolk D, Chein J, Olson I. Transcranial Direct Current Stimulation Enhances Verbal Working Memory Training Performance over Time and Near-transfer Outcomes. Journal of Cognitive Neuroscience. 2014. [PubMed] [Google Scholar]

104. Marangolo P, Fiori F, Calpagnano M, Campana S, Razzano C, Caltagirone C, et al. tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience. 2013;7:1–10. 10.3389/fnhum.2013.00001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 2011;118(1–2):40–50. Epub 2011/04/05. 10.1016/j.bandl.2011.02.005 S0093-934X(11)00037-X [pii]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Chrysikou EG, Hamilton RH, Coslett HB, Datta A, Bikson M, Thompson-Schill SL. Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cogn Neurosci. 2013;4(2):81–9. Epub 2013/07/31. 10.1080/17588928.2013.768221 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Backman L, Nyberg L. Dopamine and training-related working-memory improvement. Neurosci Biobehav Rev. 2013. Epub 2013/01/22. S0149-7634(13)00015-8 [pii] 10.1016/j.neubiorev.2013.01.014 . [PubMed] [CrossRef] [Google Scholar]

108. Kuhn S, Schmiedek F, Schott B, Ratcliff R, Heinze HJ, Duzel E, et al. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training. J Cogn Neurosci. 2011;23(9):2147–58. Epub 2010/09/03. 10.1162/jocn.2010.21564 . [PubMed] [CrossRef] [Google Scholar]

109. Backman L, Nyberg L, Soveri A, Johansson J, Andersson M, Dahlin E, et al. Effects of Working-Memory Training on Striatal Dopamine Release. Science. 2011;333(6043):718-. 10.1126/Science.1204978 WOS:000293512100032. [PubMed] [CrossRef] [Google Scholar]

110. Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L. Transfer of learning after updating training mediated by the striatum. Science. 2008;320(5882):1510–2. 10.1126/Science.1155466 WOS:000256676400049. [PubMed] [CrossRef] [Google Scholar]

111. Ambrus GG, Al-Moyed H, Chaieb L, Sarp L, Antal A, Paulus W. The fade-in—Short stimulation—Fade out approach to sham tDCS—Reliable at 1 mA for naive and experienced subjects, but not investigators. Brain stimulation. 2012;5(4):499–504. 10.1016/J.Brs.2011.12.001 WOS:000311532200008. [PubMed] [CrossRef] [Google Scholar]

112. O'connell NE, Cossar J, Marston L, Wand BM, Bunce D, Moseley GL, et al. Rethinking Clinical Trials of Transcranial Direct Current Stimulation: Participant and Assessor Blinding Is Inadequate at Intensities of 2mA. Plos One. 2012;7(10). ARTN e47514 10.1371/journal.pone.0047514 WOS:000311146900070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Berryhill ME, Peterson DJ, Jones KT, Stephens JA. Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol. 2014;5(800). Epub Jul 25. 10.3389/fpsyg.2014.00800 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Cassavaugh ND, Kramer AF. Transfer of computer-based training to simulated driving in older adults. Appl Ergon. 2009;40(5):943–52. Epub 2009/03/10. 10.1016/j.apergo.2009.02.001 S0003-6870(09)00026-X [pii]. . [PubMed] [CrossRef] [Google Scholar]

Which of the following is a focus of the late adulthood stage?

Late adulthood spans from age 65 to the end of life. There is negativity associated with this stage of life that tends to focus on deterioration, dependency, and end to learning.

Which pair of memory systems demonstrates the largest decline with age?

It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults.

Which biological factor is associated with declines in memory in older people?

Memory deficits associated with normal aging and Alzheimer's disease have been linked to a decrease in the volume of brain structures, such as the hippocampus and to genetic markers, such as apolipoprotein E.

What is the approximate age of onset of late adulthood?

Late adulthood, which includes those aged 65 years and above, is the fastest growing age division of the United States population (Gatz, Smyer, & DiGilio, 2016). Currently, one in seven Americans is 65 years of age or older.