Tối ưu hóa bị ràng buộc là gì

Tối ưu hóa [optimizing] là quá trình đạt tới một hay nhiều giá trị tốt nhất hay tối ưu. Một ví dụ về quá trình tối ưu hóa là tối đa hóa phúc lợi kinh tế xã hội theo các mục tiêu kinh tế vĩ mô như: đầy đủ việc làm, giá cả ổn định, tăng trưởng kinh tế và cân bằng cán cân thanh toán.

[Tài liệu tham khảo: Nguyễn Văn Ngọc, Từ điển Kinh tế học, Đại học Kinh tế Quốc dân]

Tối ưu hóalà tìm một giải pháp thay thế với hiệu suất chi phí cao nhất hoặc hiệu quả hoạt động cao nhất theo các ràng buộc đã cho, bằng cách tối đa hóa các yếu tố mong muốn và giảm thiểu các yếu tố không mong muốn.

Trong khi đó, tối đa hóa có nghĩa là cố gắng đạt được kết quả cao nhất hoặc tối đa mà không tính đến chi phí. Sự tối ưu hóa bị hạn chế bởi việc thiếu thông tin đầy đủ và thiếu thời gian để đánh giá thông tin nào có sẵn.

Trong mô phỏng máy tính [mô hình hóa] của các vấn đề kinh doanh, tối ưu hóa đạt được thường bằng cách sử dụng các kỹ thuật lập trình tuyến tính của nghiên cứu hoạt động.

Link bài viết gốc Copy link //vietnamfinance.vn/toi-uu-hoa-la-gi-su-khac-biet-giua-toi-uu-hoa-va-toi-da-hoa-20180504224213837.htm

tối ưu

- t. Tốt, phù hợp, thuận lợi đến mức độ cao nhất: Điều kiện tối ưu; Hoàn cảnh tối ưu.

tình trạng tốt nhất có thể có trong hoàn cảnh có sẵn. Kinh tế học phần nhiều quan tâm đến việc phân tích xem làm thế nào mà các nhóm hay các cá nhân có thể đạt được những giải pháp TƯ. Vd. một người tiêu dùng có một thu nhập nhất định và gặp phải các giá đã định sẵn cho sản phẩm, sẽ điều chỉnh việc mua sắm sản phẩm ra sao để đạt được hình thái tiêu dùng TƯ, tức là với chi phí hạn chế mà đạt được tối đa hiệu dụng. Tất nhiên việc định nghĩa TƯ là gì cũng liên quan đến những nhận định điều gì đáng kì vọng hay cần phải kì vọng. Thường người ta giả định rằng, mục tiêu của hệ thống kinh tế là thoả mãn những kì vọng cá nhân. Trong khi tìm cách đạt được những sự TƯ, người ta thường bị ràng buộc bởi tình trạng khan hiếm hàng hoá và nguồn lực [như các cá nhân bị ràng buộc bởi thu nhập của họ]. Do vậy, chúng ta đang nói tới "sự tối ưu có ràng buộc", tức là điều tốt nhất có thể đạt được trong hoàn cảnh tồn tại những hạn chế; khi phải đạt được từ hai mục tiêu trở lên thì đôi khi phải nói đến "một sự tối ưu trong tối ưu" - tình huống tốt nhất trong số những tình huống tốt nhất. Điều này chỉ đơn giản có nghĩa là một số giải pháp có thể được xem là đáng kì vọng như nhau xét theo một tiêu chuẩn [chẳng hạn như hiệu quả] trong khi việc áp dụng một tiêu chuẩn thứ hai [chẳng hạn như phân phối thu nhập bình đẳng] sẽ cho ta một giải pháp toàn diện tốt nhất.

ht. Tốt nhất, có kết quả cao nhất. Phương án tối ưu. Giải pháp tối ưu.

7. Kết cấu của đề tài luận án

1.4.1. Lý thuyết tối ưu hóa

1.4.1.1. Khái niệm tối ưu hóa

Tối ưu hóa: Là lĩnh vực toán học nghiên cứu lý thuyết và thuật toán giải các bài toán cực trị. Nghĩa là, tìm trạng thái tối ưu của một hệ thống bị ràng buộc, sao cho đạt được mục tiêu mong muốn về chất lượng, theo một nghĩa nào đó [3, 4, 5].

Tối ưu hóa trong lĩnh vực toán học có ảnh hưởng đến hầu hết các lĩnh vực khoa học - công nghệ và kinh tế - xã hội. Thực tế việc tìm giải pháp tối ưu cho một vấn đề nào đó, chiếm vai trò hết sức quan trọng. Phương án tối ưu là phương án hợp lý nhất, tốt nhất, tiết kiệm chi phí, tăng doanh thu, lợi nhuận, mang lại hiệu quả cao cho các bên [6, 7, 8, 9].

Tối ưu hoá hệ thống vận tải: Là một thiết kế quy trình kỹ thuật vận tải khác nhau, nhằm thực hiện việc di chuyển vị trí của hàng hoá trong không gian một cách hiệu quả nhất.

1.4.1.2. Các yếu tố của một bài toán tối ưu hóa Gồm ba yếu tố cơ bản sau [4, 5, 6]:

-Trạng thái: Mô tả trạng thái của hệ thống cần tối ưu hóa.

- Mục tiêu: Đặc trưng tiêu chuẩn hoặc hiệu quả mong muốn [như chi phí thấp nhất, hiệu suất cao nhất, lợi nhuận cao nhất, thời gian ngắn nhất, tốc độ nhanh nhất,...].

- Ràng buộc: Thể hiện điều kiện kinh tế, kỹ thuật, công nghệ,... mà hệ thống phải thỏa mãn.

1.4.1.3. Bài toán tối ưu tổng quát

Bài toán tối ưu dạng tổng quát được phát biểu như sau [3, 4, 7, 8]: Cực đại hóa [cực tiểu hóa] hàm số:

F [X] →MAX [MIN] [1.1] Với các điều kiện gi [x] [≤ , =, ≥ ] BI, I = 1,..., M [1.2]

X∈X ⊂RN [1.3]

Bài toán thõa mãn [1.1] - [1.3] được gọi là một quy hoạch, trong đó: -f[x] gọi là hàm mục tiêu;

- gi[x], i = 1,… m, gọi là các hàm ràng buộc, với mỗi đẳng thức hoặc bất đẳng thức trong hệ [1.2] được gọi là một ràng buộc.

Vì vậy tập hợp D =

{

x ∈ X

gi[ x]

[

≤ , =, ≥

]

bi, i = 1,..., m

}

[1.4] Đây là miền ràng buộc [hay miền chấp nhận được]. Mỗi điểm

X =

[

X1 , X2 ,... XN

]

∈ D được gọi là một phương án.

Một phương án X∗ ∈ D đạt cực đại hay cực tiểu của hàm mục tiêu, cụ thể như sau:

Đối với bài toán cực đại [Mmax]: F [ X* ] ≥ F [ X], ∀X ∈ D ;

Đối với bài toán cực tiểu [Mmin]: F [ X* ] ≤ F [ X], ∀X ∈ D . Được gọi là phương án tối ưu [hay lời giải tối ưu], khi đó giá trị được gọi là giá trị tối ưu của bài toán.

1.4.1.4. Các bước để thực hiện mô hình hóa toán học

Để mô hình hóa toán học cho một vấn đề thực tế, có thể chia làm các bước như sau [3, 6]:

Thứ nhất: Xây dựng mô hình định tính cho vấn đề thực tế, tức là xác định các yếu tố có ý nghĩa quan trọng nhất và xác lập các quy luật mà chúng F [X*]

Thứ hai: Xây dựng mô hình cho vấn đề đang xét, tức là diễn tả lại dưới dạng ngôn ngữ toán học cho mô hình định tính. Khi có một hệ thống, cần chọn các biến số đặc trưng cho trạng thái của hệ thống.

Mô hình toán học thiết lập mối liên hệ giữa các biến số và các hệ số điều khiển hiện tượng. Quan trọng trong bước này là xác định hàm mục tiêu đúng với các giá trị lớn hay giá trị nhỏ. Từ đó, diễn tả bằng các phương trình hay bất phương trình, các điều kiện kinh tế, kỹ thuật, … đó là các ràng buộc toán học mà các biến số phải tuân theo.

Thứ ba: Sử dụng các công cụ toán học để khảo sát và giải quyết bài toán hình thành trong bước 2. Căn cứ vào mô hình đã xây dựng, cần chọn hoặc xây dựng phương pháp giải cho phù hợp và cụ thể hóa bằng các thuật toán tối ưu. Bởi vì các bài toán thực tế thường có kích thước, số liệu lớn nên không thể giải bằng tay, mà phải sử dụng máy tính điện tử hay chương trình hóa thuật toán bằng các phần mềm chuyên dụng thích hợp, sau đó đưa lên máy tính để chạy và in ra kết quả.

Thứ tư: Phân tích và kiểm định lại kết quả nhận được trong bước 3. Bước này cần xác định mức độ phù hợp của mô hình và kết quả tính toán về vấn đề thực tế, hoặc áp dụng phương pháp phân tích chuyên gia để tổng hợp, đánh giá, nhận xét các kết quả đạt được của vấn đề thực tế nghiên cứu.

Chủ Đề