Bài tập về hằng đẳng thức đáng nhớ

Bài viết 20 Bài tập Những hằng đẳng thức đáng nhớ có đáp án gồm các dạng bài tập về Những hằng đẳng thức đáng nhớ lớp 8 từ cơ bản đến nâng cao giúp học sinh lớp 8 biết cách làm bài tập Những hằng đẳng thức đáng nhớ.

Bài 1: Điền vào chỗ trống: A = ( 1/2x - y )2 = 1/4x2 - ... + y2

Quảng cáo

  1. 2xy B. xy
  1. - 2xy D. 1/2 xy

Lời giải:

Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2.

Khi đó ta có A = ( 1/2x - y )2 = 1/4x2 - 2.1/2x.y + y2 = 1/4x2 - xy + y2.

Suy ra chỗ trống cần điền là xy.

Chọn đáp án B.

Bài 2: Điều vào chỗ trống: ... = ( 2x - 1 )( 4x2 + 2x + 1 ).

  1. 1 - 8x3.
  1. 1 - 4x3.
  1. x3 - 8.
  1. 8x3 - 1.

Lời giải:

Áp dụng hằng đẳng thức a3 - b3 = ( a - b )( a2 + ab + b2 )

Khi đó ta có ( 2x - 1 )( 4x2 + 2x + 1 ) = ( 2x - 1 )[ ( 2x )2 + 2x.1 + 1 ] = ( 2x )3 - 1 = 8x3 - 1.

Suy ra chỗ trống cần điền là 8x3 - 1.

Chọn đáp án D.

Bài 3: Tính giá trị cuả biểu thức A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1.

Quảng cáo

  1. 1 B. 8
  1. 27 D. -1

Lời giải:

Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3.

Khi đó ta có:

A = 8x3 + 12x2y + 6xy2 + y3 = ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3 = ( 2x + y )3

Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27.

Chọn đáp án C.

Bài 4: Tính giá trị của biểu thức A = 352 - 700 + 102.

  1. 252. B. 152.
  1. 452. D. 202.

Lời giải:

Ta có A = 352 - 700 + 102 = 352 - 2.35.10 + 102

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2.

Khi đó A = ( 35 - 10 )2 = 252.

Chọn đáp án A.

Bài 5: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?

Quảng cáo

  1. x = 1. B. x = - 1.
  1. x = 2. D. x = - 2.

Lời giải:

Ta có 2x2 - 4x + 2 = 0 ⇔ 2( x2 - 2x + 1 ) = 0 ( 1 )

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2

Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0 ⇔ x - 1 = 0 ⇔ x = 1.

Chọn đáp án A.

Quảng cáo

Bài 6:

Lời giải:

Áp dụng hằng đẳng thức đáng nhớ:

Ta được:

Chọn đáp án A

Bài 7: Điền vào chỗ chấm:

Lời giải:

Chọn đáp án C

Bài 8: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)

  1. 2x3 B. -16y3
  1. 16y3 D. –2x3

Lời giải:

Áp dụng hằng đẳng thức:

a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:

A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)

A = x3 – (2y)3 - [x3 + (2y)3]

A = x3 – 8y3 – x3 – 8y3 = -16y3

Chọn đáp án B

Bài 9: Tìm x biết x2 – 16 + x(x – 4) = 0

  1. x = 2 hoặc x = - 4.
  1. x = 2 hoặc x = 4.
  1. x = -2 hoặc x = - 4.
  1. x = -2 hoặc x = 4.

Lời giải:

Ta có: x2 – 16 + x(x – 4) = 0

⇔ (x + 4). (x - 4) + x.(x – 4) = 0

⇔ (x + 4 + x).(x - 4) = 0

⇔ (2x + 4). (x - 4) = 0

⇔ 2x + 4 = 0 hoặc x – 4 = 0

* Nếu 2x + 4 = 0 thì x = -2

* Nếu x – 4 =0 thì x = 4

Vậy x = -2 hoặc x = 4.

Chọn đáp án D

Bài 10: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

  1. 2x2 + 4xy B. – 8y2 + 4xy
  1. - 8y2 D. – 6y2 + 2xy

Lời giải:

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]

A = x2 – 4y2 – x2 + 4xy - 4y22

A = -8y2 + 4xy

Chọn đáp án B

Bài 11: Chọn câu đúng

  1. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
  1. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
  1. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
  1. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)

Lời giải

Ta có

(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên A sai

(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên B sai

(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên D sai

(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng

Đáp án cần chọn là: C

Bài 12: Chọn câu đúng

  1. 4 – (a + b)2 = (2 + a + b)(2 – a + b)
  1. 4 – (a + b)2 = (4 + a + b)(4 – a – b)
  1. 4 – (a + b)2 = (2 + a – b)(2 – a + b)
  1. 4 – (a + b)2 = (2 + a + b)(2 – a – b)

Lời giải

Ta có 4 – (a + b)2 = 22 – (a + b)2 = (2 + a + b)[2 – (a + b)]

\= (2 + a + b)(2 – a – b)

Đáp án cần chọn là: D

Bài 13: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được

  1. -15x + 1
  1. 1
  1. 15x + 1
  1. – 1

Lời giải

Ta có A = (3x – 1)2 – 9x(x + 1)

\= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)

\= 9x2 – 6x + 1 – 9x2 – 9x

\= -15x + 1

Đáp án cần chọn là: A

Bài 14: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được2 + 4(x – 5)2 – 9(

  1. 342
  1. 243
  1. 324
  1. -324

Lời giải

Ta có A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)

\= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)

\= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)

\= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144

\=

(5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)

\= 324

Đáp án cần chọn là: C

Bài 15: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

  1. 0
  1. 1
  1. 19
  1. – 19

Lời giải

Ta có B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)

\= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)

\= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a

\= - 19

Đáp án cần chọn là: D

Bài 16: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.

  1. B < 12
  1. B > 13
  1. 12 < B< 14
  1. 11 < B < 13

Lời giải

Ta có B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).

\= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)

\= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12

Đáp án cần chọn là: D

Bài 17: Cho . Tìm mối quan hệ giữa C và D.

  1. D = 14C + 1
  1. D = 14C
  1. D = 14C – 1
  1. D = 14C – 2

Lời giải

Ta có:

Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)

Đáp án cần chọn là: A

Bài 18: Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).

Tìm mối quan hệ giữa M và N

  1. 2N – M = 60
  1. 2M – N = 60
  1. M> 0, N < 0
  1. M > 0, N > 0

Lời giải

Ta có

M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12

\= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x

\= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x

\= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8

\= 13

N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)

\= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x

\= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x

\= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36

\= -34

Suy ra M = 13, N = -34 ⇔ 2M – N = 60

Đáp án cần chọn là: B

Bài 19: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0

  1. 0
  1. 1
  1. 2
  1. 3

Lời giải

Vậy có hai giá trị của x thỏa mãn yêu cầu

Đáp án cần chọn là: C

Bài 20: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0

  1. 0
  1. 1
  1. 2
  1. 3

Lời giải

Ta có:

Vậy có một giá trị của x thỏa mãn yêu cầu.

Đáp án cần chọn là: B

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

  • Lý thuyết Những hằng đẳng thức đáng nhớ đầy đủ
  • Lý thuyết Những hằng đẳng thức đáng nhớ
  • Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
  • Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

  • Giải bài tập Toán 8
  • Giải sách bài tập Toán 8
  • Top 75 Đề thi Toán 8 có đáp án
  • Bài tập về hằng đẳng thức đáng nhớ
    Gói luyện thi online hơn 1 triệu câu hỏi đầy đủ các lớp, các môn, có đáp án chi tiết. Chỉ từ 200k!

Săn SALE shopee tháng 12:

  • Đồ dùng học tập giá rẻ
  • Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Bài tập về hằng đẳng thức đáng nhớ

Bài tập về hằng đẳng thức đáng nhớ

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.