Từ các chữ số 0, 1 2 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau

Câu hỏi : Từ các số 0 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 5

A. 660

B. 432

C. 679

D. 523

Lời giải:

I. Lý thuyết Dấu hiệu chia hết cho 5

Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết cho 5.

Các số không có chữ số tận cùng là 0 hoặc 5 thì không chia hết cho 5.

Từ các số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 5

Chọn a, có 6 cách chọn

Chọn b, có 5 cách chọn

Chọn c, có 4 cách chọn

Chọn d, có 3 cách chọn

Theo quy tắc nhân , vậy có 1 x 6 x 5x 4 x 3 = 360 số

TH 2 : e=5 , có 1 cách chọn e

Từ các số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 5 (ảnh 2)

Theo quy tắc nhân ta có : 1 x 5 x 5 x 4 x 3 =300 số

Áp dụng quy tắc cộng ta có tất cả: 360 + 300 = 660 số

Đáp án đúng là A. 660

II. Một số dạng bài tập về quy tắc đếm lớp 11

Từ các số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 5 (ảnh 3)

1. Bài tập quy tắc đếm trực tiếp

Để đếm số cách thực hiện một công việc, ta phân chia cách thực hiện công việc đó thành các phương án, trong mỗi phương án lại chia thành các công đoạn. Sau đó sử dụng quy tắc nhân và quy tắc cộng để suy ra số cách thực hiện công việc đó.

Bài 1.

Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên gồm:

a.Một chữ số.

b.Hai chữ số.

c.Hai chữ số kháu nhau?

Lời giải:

a. Liệt kê được 4 số thỏa mãn.

b. Gọi số có 2 chữ số cần lập là ab.

Chữ số a có 4 cách chọn, chữ số b có 4 cách chọn

Vậy theo quy tắc nhân ta có: 4.4 = 16 (số).

c. Gọi số có 2 chữ số cần lập là ab.

Chữ số a có 4 cách chọn,chữ số b có 3 cách chọn.

Vậy theo quy tắc nhân ta có: 4.3 = 12 (số).

Bài 2.

Có bao nhiêu số nguyên của tập hợp {1; 2;; 1000} mà chia hết cho 3 hoặc 5?

Lời giải:

Từ các số 0, 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 5 (ảnh 4)

Bài 3.

Có bao nhiêu cách xếp 5 bạn nam và 7 bạn nữ thành một hàng ngang, sao cho không có hai bạn nam nào đứng cạnh nhau.

Lời giải:

Xếp 7 bạn nữ thành hàng ngang có 7.6.5.4.3.2.1=5040 cách xếp.

Khi đó 7 bạn nữ chia hàng ngang thành 8 khoảng trống.

Xếp 5 bạn nam vào 8 khoảng trống đó sao cho mỗi khoảng trống xếp nhiều nhất một bạn nam. Số cách xếp 5 bạn nam là: 8.7.6.5.4=6720 cách xếp.

Theo quy tắc nhân có: 5040x 6720=33868800 cách xếp.

2. Bài tập quy tắc đếm gián tiếp

Để đếm số cách thực hiện một công việc nào đó, mà việc đếm trực tiếp phức tạp, người ta có thể sử dụngphương pháp đếm phần bù. Nghĩa là bỏ đi một giả thiết gây ra sự phức tạp. Khi đó giả sử đếm được m cách thực hiện. Trong số cách thực hiện đó ta đếm số cách thực hiện công việc mà không thỏa mãn giả thiết bỏ đi được n cách thực hiện. Suy ra có m-n cách thực hiện công việc đã cho.

Bài 1.

Trong một hộp có 4 viên bi xanh và 6 viên bi đỏ. Có bao nhiêu cách chọn ra 3 viên bi sao cho có ít nhất 1 viên bi đỏ?

Lời giải:

Chọn ngẫu nhiên 3 viên bi bất kỳ có (10.9.8):(3.2.1)=120 cách. Số cách chọn 3 viên màu xanh là 4.3.2=24.

Vậy số cách thỏa mãn yêu cầu bài toán là 120-24=96 cách.

Bài 2.

Trong mặt phẳng có 5 điểm phân biệt A, B, C, D, E. Hỏi có bao nhiêu véc tơ khác véc tơ không. Có điểm đầu và điểm cuối là các điểm A, B, C, D, E thỏa mãn điểm A không phải là điểm đầu?

Lời giải:

Ta đếm số véc tơ được tạo thành từ 5 điểm là 5.4=20.

Ta đếm số cách chọn véc tơ được tạo thành từ 5 điểm mà điểm A là điểm đầu có 4 véc tơ.

Vậy có 20-4=16 véc tơ thỏa mãn.

Bài 3.

Mỗi mật khẩu máy tính gồm 6 ký tự, mỗi ký tự hoặc là một chữ cái hoặc là một chữ số và mặt khẩu phải có ít nhất một chữ số. Hỏi lập được bao nhiêu mật khẩu?

Lời giải:

Mỗi ký tự có 26+10=36 cách chọn. Do đó chuỗi gồm 6 ký tự có 366 cách lập.

Số chuỗi 6 ký tự không có chữ số là 266 .

Vậy có tất cả 366-266=1867866560 mật khẩu.

Video liên quan